219 research outputs found

    Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Full text link
    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation by tissue optical properties, an effect that causes spectral corruption. Predictions of the spectral variations of light fluence in tissue are challenging since the spatial distribution of optical properties in tissue cannot be resolved in high resolution or with high accuracy by current methods. Spectral corruption has fundamentally limited the quantification accuracy of optical and optoacoustic methods and impeded the long sought-after goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical but still unattainable target for the assessment of oxygenation in physiological processes and disease. We discover a new principle underlying light fluence in tissues, which describes the wavelength dependence of light fluence as an affine function of a few reference base spectra, independently of the specific distribution of tissue optical properties. This finding enables the introduction of a previously undocumented concept termed eigenspectra Multispectral Optoacoustic Tomography (eMSOT) that can effectively account for wavelength dependent light attenuation without explicit knowledge of the tissue optical properties. We validate eMSOT in more than 2000 simulations and with phantom and animal measurements. We find that eMSOT can quantitatively image tissue sO2 reaching in many occasions a better than 10-fold improved accuracy over conventional spectral optoacoustic methods. Then, we show that eMSOT can spatially resolve sO2 in muscle and tumor; revealing so far unattainable tissue physiology patterns. Last, we related eMSOT readings to cancer hypoxia and found congruence between eMSOT tumor sO2 images and tissue perfusion and hypoxia maps obtained by correlative histological analysis

    Welche Chancen bietet die Immunonkologie fĂĽr ein indikationsĂĽbergreifendes LangzeitĂĽberleben?

    Get PDF
    Tumore nutzen verschiedene Escape-Mechanismen, um das körpereigene Immunsystem zu überlisten und sich gegenüber der Tumor-Immunabwehr durchzusetzen: Die Erkenntnis, dass sie immunregulative Moleküle wie z.B. CTLA-4 (Cytotoxic T Lymphocyte Antigen 4) oder PD-1 (programmed cell death 1) sowie deren Liganden PD-L1/PD-L2 instrumentalisieren können, um der Immunüberwachung zu entkommen (immune escape), hat einen vollständig neuen Therapiezugang für die Onkologie eröffnet..

    From Localized Mild Hyperthermia to Improved Tumor Oxygenation: Physiological Mechanisms Critically Involved in Oncologic Thermo-Radio-Immunotherapy.

    Get PDF
    (1) Background: Mild hyperthermia (mHT, 39-42 °C) is a potent cancer treatment modality when delivered in conjunction with radiotherapy. mHT triggers a series of therapeutically relevant biological mechanisms, e.g., it can act as a radiosensitizer by improving tumor oxygenation, the latter generally believed to be the commensurate result of increased blood flow, and it can positively modulate protective anticancer immune responses. However, the extent and kinetics of tumor blood flow (TBF) changes and tumor oxygenation are variable during and after the application of mHT. The interpretation of these spatiotemporal heterogeneities is currently not yet fully clarified. (2) Aim and methods: We have undertaken a systematic literature review and herein provide a comprehensive insight into the potential impact of mHT on the clinical benefits of therapeutic modalities such as radio- and immuno-therapy. (3) Results: mHT-induced increases in TBF are multifactorial and differ both spatially and with time. In the short term, changes are preferentially caused by vasodilation of co-opted vessels and of upstream normal tissue vessels as well as by improved hemorheology. Sustained TBF increases are thought to result from a drastic reduction of interstitial pressure, thus restoring adequate perfusion pressures and/or HIF-1α- and VEGF-mediated activation of angiogenesis. The enhanced oxygenation is not only the result of mHT-increased TBF and, thus, oxygen availability but also of heat-induced higher O2 diffusivities, acidosis- and heat-related enhanced O2 unloading from red blood cells. (4) Conclusions: Enhancement of tumor oxygenation achieved by mHT cannot be fully explained by TBF changes alone. Instead, a series of additional, complexly linked physiological mechanisms are crucial for enhancing tumor oxygenation, almost doubling the initial O2 tensions in tumors

    From Localized Mild Hyperthermia to Improved Tumor Oxygenation: Physiological Mechanisms Critically Involved in Oncologic Thermo-Radio-Immunotherapy

    Full text link
    (1) Background: Mild hyperthermia (mHT, 39-42 °C) is a potent cancer treatment modality when delivered in conjunction with radiotherapy. mHT triggers a series of therapeutically relevant biological mechanisms, e.g., it can act as a radiosensitizer by improving tumor oxygenation, the latter generally believed to be the commensurate result of increased blood flow, and it can positively modulate protective anticancer immune responses. However, the extent and kinetics of tumor blood flow (TBF) changes and tumor oxygenation are variable during and after the application of mHT. The interpretation of these spatiotemporal heterogeneities is currently not yet fully clarified. (2) Aim and methods: We have undertaken a systematic literature review and herein provide a comprehensive insight into the potential impact of mHT on the clinical benefits of therapeutic modalities such as radio- and immuno-therapy. (3) Results: mHT-induced increases in TBF are multifactorial and differ both spatially and with time. In the short term, changes are preferentially caused by vasodilation of co-opted vessels and of upstream normal tissue vessels as well as by improved hemorheology. Sustained TBF increases are thought to result from a drastic reduction of interstitial pressure, thus restoring adequate perfusion pressures and/or HIF-1α- and VEGF-mediated activation of angiogenesis. The enhanced oxygenation is not only the result of mHT-increased TBF and, thus, oxygen availability but also of heat-induced higher O2_{2} diffusivities, acidosis- and heat-related enhanced O2_{2} unloading from red blood cells. (4) Conclusions: Enhancement of tumor oxygenation achieved by mHT cannot be fully explained by TBF changes alone. Instead, a series of additional, complexly linked physiological mechanisms are crucial for enhancing tumor oxygenation, almost doubling the initial O2_{2} tensions in tumors

    Functional consequences of genetic polymorphisms in the NKG2D receptor signaling pathway and putative gene interactions

    Get PDF
    NKG2D (NK group 2, member D) is an activating natural killer (NK) receptor, which is expressed on NK and CD8+ T cells. On NK cells, NKG2D elicits cytotoxicity and release of cytokines. On CD8+ T cells, it functions as a co-stimulatory molecule. The receptor recognizes several ligands including the major histocompatibility complex (MHC) class I chain-related molecules A (MICA) and B (MICB) as well as the UL16-binding proteins (ULBP). The diversity of NKG2D ligands is further increased by a high degree of genetic variability of the ligands. Recently, an amino acid exchange from valine to methionine at position 129 in MICA has been found to be associated with the outcome of allogeneic hematopoietic stem cell transplantation (HSCT), and the functional consequences of this specific genetic variation have been elucidated. The clinical associations found after HSCT were explainable by the functional differences of the MICA-129 variants. Herein, we discuss how the genetic polymorphisms of NKG2D ligands and NKG2D itself interact and may affect the outcome of HSCT and the susceptibility to other diseases, which have been associated with polymorphisms in the NKG2D signaling pathway

    Anti-tumor activity of patient-derived NK cells after cell-based immunotherapy – a case report

    Get PDF
    Background: Membrane-bound heat shock protein 70 (Hsp70) serves as a tumor-specific recognition structure for Hsp70-peptide (TKD) plus IL-2 activated NK cells. A phase I clinical trial has shown that repeated re-infusions of ex vivo TKD/IL-2-activated, autologous leukapheresis product is safe. This study investigated the maintenance of the cytolytic activity of NK cells against K562 cells and autologous tumor after 6 plus 3 infusions of TKD/IL-2-activated effector cells. Methods: A stable tumor cell line was generated from the resected anastomotic relapse of a patient with colon carcinoma (pT3, N2, M0, G2). Two months after surgery, the patient received the first monthly i.v. infusion of his ex vivo TKD/IL-2-activated peripheral blood mononuclear cells (PBMNC). After 6 infusions and a pause of 3 months, the patient received another 3 cell infusions. The phenotypic characteristics and activation status of tumor and effector cells were determined immediately before and at times after each infusion. Results: The NK cell ligands Hsp70, MICA/B, and ULBP-1,2,3 were expressed on the patient's anastomotic relapse. An increased density of activatory NK cell receptors following ex vivo stimulation correlated with an enhanced anti-tumoricidal activity. After 4 re-infusion cycles, the intrinsic cytolytic activity of non-stimulated PBMNC was significantly elevated and this heightened responsiveness persisted for up to 3 months after the last infusion. Another 2 re-stimulations with TKD/IL-2 restored the cytolytic activity after the therapeutic pause. Conclusion: In a patient with colon carcinoma, repeated infusions of ex vivo TKD/IL-2-activated PBMNC initiate an intrinsic NK cell-mediated cytolytic activity against autologous tumor cells

    Heat Shock Protein 70 Promotes Cell Survival by Inhibiting Lysosomal Membrane Permeabilization

    Get PDF
    Heat shock protein 70 (Hsp70) is a potent survival protein whose depletion triggers massive caspase-independent tumor cell death. Here, we show that Hsp70 exerts its prosurvival function by inhibiting lysosomal membrane permeabilization. The cell death induced by Hsp70 depletion was preceded by the release of lysosomal enzymes into the cytosol and inhibited by pharmacological inhibitors of lysosomal cysteine proteases. Accordingly, the Hsp70-mediated protection against various death stimuli in Hsp70-expressing human tumor cells as well as in immortalized Hsp70 transgenic murine fibroblasts occurred at the level of the lysosomal permeabilization. On the contrary, Hsp70 failed to inhibit the cytochrome c–induced, apoptosome-dependent caspase activation in vitro and Fas ligand–induced, caspase-dependent apoptosis in immortalized fibroblasts. Immunoelectron microscopy revealed that endosomal and lysosomal membranes of tumor cells contained Hsp70. Permeabilization of purified endo/lysosomes by digitonin failed to release Hsp70, suggesting that it is physically associated with the membranes. Finally, Hsp70 positive lysosomes displayed increased size and resistance against chemical and physical membrane destabilization. These data identify Hsp70 as the first survival protein that functions by inhibiting the death-associated permeabilization of lysosomes

    Leveraging Random Forests for Interactive Exploration of Large Histological Images

    Get PDF
    International audienceThelargesizeofhistologicalimagescombinedwiththeirvery challenging appearance are two main difficulties which considerably com- plicate their analysis. In this paper, we introduce an interactive strategy leveraging the output of a supervised random forest classifier to guide a user through such large visual data. Starting from a forest-based pixel- wise estimate, subregions of the images at hand are automatically ranked and sequentially displayed according to their expected interest. After each region suggestion, the user selects among several options a rough es- timate of the true amount of foreground pixels in this region. From these one-click inputs, the region scoring function is updated in real time using an online gradient descent procedure, which corrects on-the-fly the short- comings of the initial model and adapts future suggestions accordingly. Experimental validation is conducted for extramedullary hematopoesis localization and demonstrates the practical feasibility of the procedure as well as the benefit of the online adaptation strategy

    Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy

    Get PDF
    Radiotherapy (RT) has been applied for decades as a treatment modality in the management of various types of cancer. Ionizing radiation induces tumor cell death, which in turn can either elicit protective anti-tumor immune responses or immunosuppression in the tumor micromilieu that contributes to local tumor recurrence. Immunosuppression is frequently accompanied by the attraction of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), M2 tumor-associated macrophages (TAMs), T regulatory cells (Tregs), N2 neutrophils, and by the release of immunosuppressive cytokines (TGF-β, IL-10) and chemokines. Immune checkpoint pathways, particularly of the PD-1/PD-L1 axis, have been determined as key regulators of cancer immune escape. While IFN-dependent upregulation of PD-L1 has been extensively investigated, up-to-date studies indicated the importance of DNA damage signaling in the regulation of PD-L1 expression following RT. DNA damage dependent PD-L1 expression is upregulated by ATM/ATR/Chk1 kinase activities and cGAS/STING-dependent pathway, proving the role of DNA damage signaling in PD-L1 induced expression. Checkpoint blockade immunotherapies (i.e., application of anti-PD-1 and anti-PD-L1 antibodies) combined with RT were shown to significantly improve the objective response rates in therapy of various primary and metastatic malignancies. Further improvements in the therapeutic potential of RT are based on combinations of RT with other immunotherapeutic approaches including vaccines, cytokines and cytokine inducers, and an adoptive immune cell transfer (DCs, NK cells, T cells). In the current review we provide immunological rationale for a combination of RT with various immunotherapies as well as analysis of the emerging preclinical evidences for these therapies
    • …
    corecore